Respuesta :

Answer::

[tex]\frac{3}{5}x+2[/tex]

Explanation:

Given the sum:

[tex]\left(\frac{2}{5} x+3\right)+\left(\frac{1}{5} x-1\right)[/tex]

First, remove the brackets:

[tex]=\frac{2}{5}x+3+\frac{1}{5}x-1[/tex]

Next, rearrange to bring like terms together, i.e. bring all the numbers without any letter (variable) attached together.

[tex]={\frac{2}{5}}x+\frac{1}{5}x+3-1[/tex]

We can then add the like terms:

Using the diagram below:

This means that:

[tex]\begin{gathered} \frac{2}{5}+\frac{1}{5}=\frac{3}{5} \\ \frac{2}{5}x+\frac{1}{5}x=\frac{3}{5}x \end{gathered}[/tex]

So, we then have:

[tex]\frac{2}{5}x+\frac{1}{5}x+3-1=\frac{3}{5}x+2[/tex]

The sum of the expression is:

[tex]\frac{3}{5}x+2[/tex]

Ver imagen RoddrickC158357
ACCESS MORE
EDU ACCESS
Universidad de Mexico