Respuesta :

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given linear equation

[tex]10y-20x+50[/tex]

STEP 2: Subtract 50 from both sides

[tex]\begin{gathered} 10y-20x+50-50=0-50 \\ 10y-20x=-50 \end{gathered}[/tex]

STEP 3: Add 20x to both sides

[tex]\begin{gathered} 10y-20x+20x=-50+20x \\ 10y=-50+20x \end{gathered}[/tex]

STEP 4: Divide both sides by 10

[tex]\begin{gathered} \frac{10y}{10}=\frac{-50+20x}{10} \\ \\ y=\frac{-50}{10}+\frac{20x}{10} \\ y=-5+2x \\ y=2x-5 \end{gathered}[/tex]

Since the slope intercept form of a line is given as:

[tex]\begin{gathered} y=mx+c \\ where\text{ m is the slope} \\ c\text{ is the y-intercept} \end{gathered}[/tex]

Hence, the slope intercept form is given as:

[tex]y=2x-5[/tex]

RELAXING NOICE
Relax