Solution:
Given:
[tex]log_5x+log_5(2x+9)=1[/tex]Using the law of logarithm,
[tex]logM+logN=log(MN)[/tex]Hence,
[tex]\begin{gathered} log_5x+log_5(2x+9)=1 \\ log_5(x(2x+9))=1 \\ log_5(2x^2+9x)=1 \end{gathered}[/tex]Also, applying the logarithm rule;
[tex]\begin{gathered} If\text{ }log_ab=x,\text{ then} \\ a^x=b \end{gathered}[/tex]Thus;
[tex]\begin{gathered} log_5(2x^2+9x)=1 \\ 5^1=2x^2+9x \\ 5=2x^2+9x \\ Collecting\text{ all terms to one side;} \\ 0=2x^2+9x-5 \\ 2x^2+9x-5=0 \end{gathered}[/tex]Solving the quadratic equation by factorization;
[tex]\begin{gathered} 2x^2+10x-x-5=0 \\ 2x(x+5)-1(x+5)=0 \\ (2x-1)(x+5)=0 \\ 2x-1=0\text{ OR }x+5=0 \\ 2x=1\text{ OR }x=-5 \\ x=\frac{1}{2} \\ \\ \\ Thus; \\ x=\frac{1}{2}\text{ OR }x=-5 \end{gathered}[/tex][tex]\begin{gathered} log_5(\frac{1}{2})+log_5(2(\frac{1}{2})+9)=1 \\ log_5(\frac{1}{2})+log_5(10)=1 \\ log_5(\frac{1}{2}\times10)=1 \\ log_55=1 \\ Hence,\text{ }x=\frac{1}{2}\text{ is a TRUE solution} \end{gathered}[/tex]Also,
[tex]\begin{gathered} log_5(-5)+log_5(2(-5)+9)=1 \\ log_5(-5)+log_5(-1)=1 \\ log_5(-5\times-1)=1 \\ log_55=1 \\ Hence,\text{ }x=-5\text{ is also a TRUE solution} \end{gathered}[/tex]Therefore, the solution to the equation is;
[tex]x=\frac{1}{2},x=-5[/tex]