Solve: 5 | x + 2 | + 2 > 7 The answer has the form: ( − ∞ , A ) ∪ ( B , ∞ ) ( A , B ) State your solution using interval notation like above:

Given:
[tex]5|x-3|+3>7[/tex]Aim:
We need to find the value of x.
Explanation:
Subtract 3 from both sides of the equation.
[tex]5|x-3|+3-3>7-3[/tex][tex]5|x-3|>4[/tex]Divide both sides of the equation by 5.
[tex]\frac{5}{5}|x-3|>\frac{4}{5}[/tex][tex]|x-3|>\frac{4}{5}[/tex]Square both sides.
[tex](x-3)^2>(\frac{4}{5})^2[/tex][tex](x-3)^2>\frac{16}{25}[/tex][tex]x^2-6x+9>\frac{16}{25}[/tex]multiply
[tex]x^2-6x+9>\frac{16}{25}[/tex]