Segment PQ is described by the vector:
[tex]\begin{gathered} (3,-11)-(-18,17) \\ \rightarrow(21,-28) \end{gathered}[/tex]Let point q be:
[tex](x,y)[/tex]We know that:
[tex]PQ=\frac{4}{7}PR[/tex]This way,
[tex](x,y)-(-18,17)=\frac{4}{7}(21,-28)[/tex][tex]\begin{gathered} (x+18,y-17)=(12,-16) \\ \Rightarrow x+18=12\rightarrow x=-6 \\ \Rightarrow y-17=-16\rightarrow y=1 \end{gathered}[/tex]This way, point q is:
[tex](-6,1)[/tex]