To solve for the 25th term of the arithmetic sequence:
[tex]\begin{gathered} a_1=8 \\ a_9=48 \end{gathered}[/tex]For an arithmetic sequence
[tex]\begin{gathered} T_n=a+(n-1_{})d \\ a=a_1=8 \\ a_9=a+(9-1)d \\ a_9=a+8d \\ 48=8+8d \\ 48-8=8d \\ 40=8d \\ \text{divide both side by 8} \\ \frac{40}{8}=\frac{8d}{8} \\ d=4 \end{gathered}[/tex]25th term = T_25
[tex]\begin{gathered} T_{25}=a+(25-1)d \\ T_{25}=a+24d \\ T_{25}=8+24(5) \\ T_{25}=8+120 \\ T_{25}=128 \end{gathered}[/tex]Therefore the 25th term of the arithmetic sequence = 128
Hence the correct answer is Option D