y = 1/2(x) - 1
To solve this question, we would use the midpoint formula to find the x and y coordinates.
Mid point formula:
[tex]\begin{gathered} \frac{x_1+x_2}{2},\text{ }\frac{y_1+y_2}{2} \\ =\text{ }\frac{-4+8}{2},\text{ }\frac{-4+4}{2} \\ =\text{ 2, 0} \end{gathered}[/tex]Midpoint = (2,0)
Then we would find the slope:
[tex]\begin{gathered} slope\text{ = m = }\frac{y_{2-}y_1}{x_{2\text{ }}-x_1} \\ m\text{ = }\frac{-4-4}{-4+8} \\ m\text{ = }\frac{-8}{4}\text{ = }-2 \end{gathered}[/tex]Since the slope = -2, the negative reciprocal of slopes give perpendicular.
the reciprocal = -1/-2 = 1/2
Then we apply linear quation- the slope intercept form to get the constant (c):
y = mx + c
from our midpoint (2,0), y = 0 and x =2
0 = 1/2(2) + c
c = -1
The equation for the perpendicular bisector:
y = 1/2(x) - 1