Find the volume of this sphere.Use 3 for TT.V = ģtar38 cm V = T[?]=TTI=Hint: Plug in the value of theradius for r. The diameter is 8.The radius is half this value.

We are asked to determine the volume of a sphere. To do that we will use the following formula:
[tex]V=\frac{4}{3}\pi r^3[/tex]Where "r" is the radius.
We are given that the diameter is 8cm. We have that:
[tex]r=\frac{D}{2}[/tex]Where "D" is the diameter. This means that the radius is half the diameter. Substituting we get:
[tex]r=\frac{8\operatorname{cm}}{2}=4\operatorname{cm}[/tex]Now we substitute in the formula for the volume:
[tex]V=\frac{4}{3}\pi(4\operatorname{cm})^3[/tex]we will use:
[tex]\pi=3[/tex]Substituting we get:
[tex]V=\frac{4}{3}(3)(4\operatorname{cm})^3[/tex]Now we solve the operations:-
[tex]V=4(4\operatorname{cm})^3=256\operatorname{cm}^3[/tex]Therefore, the volume of the sphere is 256 cubic centimeters.