What is the lateral area of the cone?Round nearest whole, round all intermediate values to four decimals.

To answer this question, we can use the next formula to find the lateral area of the cone:
[tex]A_L=\pi r\sqrt[]{h^2+r^2}[/tex]Where:
• π is approximately 3.1415926535...
,• r = D/2. We have that the diameter is 6ft.
,• h = height. In this case, we have h = 7ft.
We have a right circular cone, and we can use the above formula. Then, we have:
[tex]D=6ft\Rightarrow r=\frac{D}{2}\Rightarrow r=\frac{6ft}{2}\Rightarrow r=3ft[/tex]Then, we have:
[tex]A_L=\pi\cdot3\cdot\sqrt[]{7^2+3^2}\Rightarrow A_L=\pi\cdot3\cdot\sqrt[]{49+9}=\pi\cdot3\cdot\sqrt[]{58}[/tex][tex]\sqrt{58}=7.61577310586\approx7.6158[/tex]Then:
[tex]undefined[/tex]