Respuesta :

Given:

The equation is,

[tex]2\cos ^2x+9\sin x=3\sin ^2x[/tex]

Explanation:

Simplify the equation by using trigonometric identity.

[tex]\begin{gathered} 2(1-\sin ^2x)+9\sin x=3\sin ^2x \\ 2-2\sin ^2x+9\sin x=3\sin ^2x \\ 5\sin ^2-9\sin x-2=0 \end{gathered}[/tex]

Assume sin x = t, then

[tex]5t^2-9t-2=0[/tex]

Solve the equation by splitting the middle term.

[tex]\begin{gathered} 5t^2-10t+t-2=0 \\ 5t(t-2)+1(t-2)=0 \\ (5t+1)(t-2)=0 \\ t=-\frac{1}{5},2 \end{gathered}[/tex]

So,

[tex]\sin x=-\frac{1}{5}\text{ or sin x = 2}[/tex]

There is no possible value of x, for sin x = 2.

Determine the value of x by using sin x = -1/5.

[tex]\begin{gathered} \sin x=-\frac{1}{5} \\ x=\sin ^{-1}(-\frac{1}{5}) \\ \approx-0.2014,-2.9402 \end{gathered}[/tex]

So possible values of x are -0.2014 and -2.9402.

RELAXING NOICE
Relax