Explanation
We are required to determine the maximum height of the arch model given by:
[tex]f(x)=-x^2+6x-4[/tex]This is achieved thus:
- First, we start by determining the first derivative of the function as follows:
[tex]\begin{gathered} f(x)=-x^2+6x-4 \\ f^{\prime}(x)=-2x+6-0 \\ f^{\prime}(x)=-2x+6 \end{gathered}[/tex]- Next, we equate the derived function to zero and solve for x as follows:
[tex]\begin{gathered} f^{\prime}(x)=-2x+6 \\ \text{ Let }f^{\prime}(x)=0 \\ \therefore-2x+6=0 \\ -2x=-6 \\ \frac{-2x}{-2}=\frac{-6}{-2} \\ x=3 \end{gathered}[/tex]Hence, the answer is:
[tex]3\text{ }feet[/tex]