Respuesta :

Given the system of equations:

[tex]\begin{gathered} c+3d=8\rightarrow(1) \\ c=4d-6\rightarrow(2) \end{gathered}[/tex]

Substitute with c from equation (2) into equation (1), then solve for d

[tex]\begin{gathered} 4d-6+3d=8 \\ 7d=8+6 \\ 7d=14 \\ \\ d=\frac{14}{7}=2 \end{gathered}[/tex]

Substitute with d into equation (2) to find c:

[tex]\begin{gathered} c=4d-6 \\ c=4\cdot2-6 \\ c=8-6 \\ c=2 \end{gathered}[/tex]

so, the answer will be option C. c = 2, d = 2

ACCESS MORE
EDU ACCESS
Universidad de Mexico