A. Convert this matrix equation into a system of equations. Explain why you decided to follow the steps you did.B. Once you have a system of equations, use Cramer’s rule to solve for x, y, and z. Explain

Given:
The matrix is
[tex]\begin{bmatrix}{3} & {-6} & {1} \\ {-2} & {1} & {-10} \\ {4} & {10} & {-7}\end{bmatrix}\times\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {z} & {} & {}\end{bmatrix}=\begin{bmatrix}{25} & {} & {} \\ {-20} & {} & {} \\ {-11} & {} & {}\end{bmatrix}[/tex]Find-:
(a)
Convert this matrix equation into a system
(b)
Solve the values x, y, and z.
Explanation-:
The multiplication of the matrix is
[tex]\begin{gathered} =\begin{bmatrix}{3} & {-6} & {1} \\ {-2} & {1} & {-10} \\ {4} & {10} & {-7}\end{bmatrix}\times\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {z} & {} & {}\end{bmatrix} \\ \\ =\begin{bmatrix}{3x-6y+z} & {} & {} \\ {-2x+y-10z} & {} & {} \\ {4x+10y-7z} & {} & {}\end{bmatrix} \end{gathered}[/tex]The matrix is equal
[tex]\begin{bmatrix}{3x-6y+z} & {} & {} \\ {-2x+y-10z} & {} & {} \\ {4x+10y-7z} & {} & {}\end{bmatrix}=\begin{bmatrix}{25} & {} & {} \\ {-20} & {} & {} \\ {-11} & {} & {}\end{bmatrix}[/tex]If two matrices are equal, then each element is equal
So, the system equation is:
[tex]\begin{gathered} 3x-6y+z=25 \\ \\ -2x+y-10z=-20 \\ \\ 4x+10y-7z=-11 \end{gathered}[/tex](B)
The solve the equation
[tex]\begin{gathered} 3x-6y+z=25.................(1) \\ \\ -2x+y-10z=-20..........(2) \\ \\ 4x+10y-7z=-11...........(3) \end{gathered}[/tex]The value of x, y and z.
,
[tex]\begin{gathered} 3x-6y-25=z \\ \\ then\text{ equation} \\ \\ -2x+y-10(3x-6y-25)=-20 \end{gathered}[/tex][tex]4x+10y-7(3x-6y-25)=-11[/tex]The x, y and z.
[tex]\begin{gathered} x=4 \\ \\ y=-2 \\ \\ z=1 \end{gathered}[/tex]