Answer:
x=2/7 and y=3/7
Explanation:
Given the systems of equations:
[tex]\begin{gathered} 2x+y=1 \\ 5x+6y=4 \end{gathered}[/tex]We use the substitution method to solve.
Step 1: Make y the subject in the first equation.
[tex]\begin{gathered} 2x+y=1 \\ y=1-2x \end{gathered}[/tex]Step 2: Substitute y into the second equation.
[tex]\begin{gathered} 5x+6y=4 \\ 5x+6(1-2x)=4 \\ 5x+6-12x=4 \\ 5x-12x=4-6 \\ -7x=-2 \\ x=-\frac{2}{-7} \\ x=\frac{2}{7} \end{gathered}[/tex]Step 3: Solve for y
[tex]\begin{gathered} y=1-2x \\ =1-2(\frac{2}{7}) \\ =1-\frac{4}{7} \\ y=\frac{3}{7} \end{gathered}[/tex]Therefore, x=2/7 and y=3/7.