Respuesta :

We have the following trigonometric identities:

[tex]\cos2x=2\cos\placeholder{⬚}^2x-1[/tex][tex]\sin2x=2\sin x\cos x[/tex]

a)

From the first identity above we have that:

[tex]\cos\placeholder{⬚}^2x=\frac{\cos2x}{2}+\frac{1}{2}[/tex]

Plugging this in the expression given we have:

[tex]\begin{gathered} \cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{\cos2x}{2}+\frac{1}{2}-\frac{1}{2} \\ \cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{1}{2}\cos2x \end{gathered}[/tex]

Therefore:

[tex]\cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{1}{2}\cos2x[/tex]

b)

From the second identity given at the beginning we have:

[tex]\sin x\cos x=\frac{1}{2}\sin2x[/tex]

Plugging this in the second expression we have:

[tex]\begin{gathered} 6\sin x\cos x=6(\frac{1}{2}\sin2x) \\ 6\sin x\cos x=3\sin2x \end{gathered}[/tex]

Therefore:

[tex]6\sin x\cos x=3\sin2x[/tex]

RELAXING NOICE
Relax