We have the following trigonometric identities:
[tex]\cos2x=2\cos\placeholder{⬚}^2x-1[/tex][tex]\sin2x=2\sin x\cos x[/tex]a)
From the first identity above we have that:
[tex]\cos\placeholder{⬚}^2x=\frac{\cos2x}{2}+\frac{1}{2}[/tex]Plugging this in the expression given we have:
[tex]\begin{gathered} \cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{\cos2x}{2}+\frac{1}{2}-\frac{1}{2} \\ \cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{1}{2}\cos2x \end{gathered}[/tex]Therefore:
[tex]\cos\placeholder{⬚}^2x-\frac{1}{2}=\frac{1}{2}\cos2x[/tex]b)
From the second identity given at the beginning we have:
[tex]\sin x\cos x=\frac{1}{2}\sin2x[/tex]Plugging this in the second expression we have:
[tex]\begin{gathered} 6\sin x\cos x=6(\frac{1}{2}\sin2x) \\ 6\sin x\cos x=3\sin2x \end{gathered}[/tex]Therefore:
[tex]6\sin x\cos x=3\sin2x[/tex]