Solution A) = 1
Analysis:
[tex]\frac{_6C_6}{_8C_0}=\frac{\frac{6!}{6!(6-6)!}}{\frac{8!}{0!(8-0)!}}[/tex]We know for rules of combinations 0!=1
[tex]\frac{_{6}C_{6}}{_{8}C_{0}}=\frac{\frac{6!}{6!(6-6)!}}{\frac{8!}{0!(8-0)!}}=\frac{\frac{720}{720\ast1}}{\frac{40320}{1\ast40320}}=\frac{1}{1}=1[/tex]Solution B): 120
Analysis
[tex]_{10}C_3=\frac{10!}{3!(10-3)!}=\frac{3628800}{6\ast5040}=\frac{3628800}{30240}=120[/tex]Solution C)=72
Analysis
[tex]\frac{_9P_5}{_{10}C_4}=\frac{\frac{9!}{(9-5)!}}{\frac{10!}{4!(10-4)!}}=\frac{\frac{362880}{24}}{\frac{3628800}{17280}}=\frac{15120}{210}=72[/tex]Solution D)=1/2
Analysis:
[tex]\frac{_6C_2}{_6P_2}=\frac{\frac{6!}{2!(6-2)!}}{\frac{6!}{(6-2)!}}=\frac{\frac{720}{48}}{\frac{720}{24}}=\frac{15}{30}=\frac{1}{2}[/tex]Solution E)=1
Analysis
[tex]\frac{_7P_0}{_7C_0}=\frac{\frac{7!}{(7-0)!}}{\frac{7!}{0!(7-0)!}}=1[/tex]