The set of values after adding the constants will be:
[tex]\lbrace5,6,0,3,9,6,0,13,6,8\rbrace[/tex]then:
[tex]\operatorname{mean}=\frac{5+6+0+3+9+6+0+13+6+8}{10}=\frac{28}{5}=5.6[/tex][tex]\mod e=6[/tex][tex]\text{range}=\lbrace0,3,5,6,8,9,13\rbrace[/tex]and for the standard deviation:
[tex]SD=\sqrt[]{\frac{(5-5.6)^2+3(6-5.6)^2+2(0-5.6)^2+(3-5.6)^2+(9-5.6)^2+(8-5.6)^2+(13-5.6)^2}{10}}[/tex]and it would be equal to:
[tex]SD=\sqrt[]{\frac{\frac{9}{25}+\frac{12}{25}+\frac{1568}{25}+\frac{169}{25}+\frac{289}{25}+\frac{144}{25}+\frac{1369}{25}}{10}}=\sqrt[]{\frac{\frac{3560}{25}}{10}}=\sqrt[]{\frac{\frac{712}{5}}{10}}=\sqrt[]{\frac{356}{25}}=\frac{2(\sqrt[]{89})}{5}=[/tex]then:
[tex]SD\approx3.773592453[/tex]