ANSWER:
A)
[tex]p=42\cdot e^{0.619t}[/tex]B) week 4
STEP-BY-STEP EXPLANATION:
We have that the function has the following exponential form:
[tex]p=ae^{kt}[/tex]A)
We must calculate the value of k, replacing all the corresponding values, like this:
[tex]\begin{gathered} 78=42\cdot e^{k\cdot1} \\ e^k=\frac{78}{42} \\ k=\ln \: \mleft(\frac{78}{42}\mright) \\ k=0.619 \end{gathered}[/tex]Therefore, the function would be:
[tex]p=42\cdot e^{0.619t}[/tex]B)
To calculate the time it takes to reach 500, we must plug in the value of p and solve for t, like this:
[tex]\begin{gathered} 500=42\cdot\: e^{0.619t} \\ e^{0.619t}=\frac{500}{42} \\ 0.619t=\ln \: \mleft(\frac{500}{42}\mright) \\ t=\frac{\ln \: \mleft(\frac{500}{42}\mright)}{0.619} \\ t=4 \end{gathered}[/tex]Which means that the population will reach a population of 500 during week 4