If X = 6 units, Y = 5 units, and Z = 9 units, then what is the surface area of the right triangular pyramid shown above?

Explanation
We are given a right triangular pyramid shown below:
[tex]\begin{gathered} X=6units \\ Y=5units \\ Z=9units \end{gathered}[/tex]We are required to determine the surface area of the given figure.
This is achieved thus:
We know that the surface area of a right triangular pyramid is given as:
Therefore, we have:
[tex]\begin{gathered} A_s=\frac{1}{2}XY+\frac{3}{2}XZ \\ A_s=(\frac{1}{2}\cdot6\cdot5)+(\frac{3}{2}\cdot6\cdot9) \\ A_s=15+81 \\ A_s=96\text{ }square\text{ }units \end{gathered}[/tex]Hence, the answer is:
[tex]96\text{ }square\text{ }units[/tex]