Triangle FGH has the following measures: m∠G=47∘, f=30.2, and m∠H=79∘. What is the length of side g?36.654.027.331.5

The Solution:
Given:
Represent the given information in a diagram:
Step 1:
Find the measure of angle F.
By the sum of angles in a triangle, we have that:
[tex]\begin{gathered} \angle F=180-(\angle G+\angle H) \\ \\ \angle F=180(47+79)=180-126=54^o \end{gathered}[/tex]Step 2:
Find the length of g.
By applying the sine law:
[tex]\begin{gathered} \frac{f}{\sin F}=\frac{g}{\sin G} \\ \\ \frac{30.2}{\sin54}=\frac{g}{\sin47} \end{gathered}[/tex]Cross multiply,
[tex]g=\frac{30.2\sin47}{\sin54}=27.3009\approx27.3[/tex]Therefore, the correct answer is [option 4]