The final velocity of the player can be expressed as,
[tex]v^2=u^2-2gh[/tex]At the maximum height the final velocity of player is zero. Plug in the known values,
[tex]\begin{gathered} (0m/s)^2=u^2-2(9.8m/s^2)(0.65\text{ m)} \\ u^2=12.74m^2s^{-2} \\ u=3.57\text{ m/s} \end{gathered}[/tex]Now, when the initial velocity becomes, the final velocity of player as it moves. The final velocity can be expressed as,
[tex]v^2=u^2+2ah_0[/tex]Substitute the known values,
[tex]\begin{gathered} (3.57m/s)^2=(0m/s)^2+2a(0.15\text{ m)} \\ a=\frac{(3.57m/s)^2}{2(0.15\text{ m)}} \\ =42.5m/s^2 \end{gathered}[/tex]The jumping force of the player is,
[tex]F=ma[/tex]Substuting values,
[tex]\begin{gathered} F=(58kg)(42.5m/s^2)(\frac{1\text{ N}}{1kgm/s^2}) \\ =2465\text{ N} \end{gathered}[/tex]Thus, the jumping force acting on the player is 2465 N.