How do I solve this problem?Prove the two expressions are equal

ANSWER
See the explanation for the proof.
EXPLANATION
First we have to write the secant and the cotangent in terms of sine and cosine:
[tex]\sec x=\frac{1}{\cos x}[/tex][tex]\cot x=\frac{\cos x}{\sin x}[/tex]Replace into the equation,
[tex]-2\mleft(\frac{\cos x}{\sin x}\mright)^2=\frac{1}{\frac{1}{\cos x}+1}-\frac{1}{\frac{1}{\cos x}-1}[/tex]On the left side distribute the square and on the right side do the addition and subtraction in the denominators,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{1}{\frac{1+\cos x}{\cos x}}-\frac{1}{\frac{1-\cos x}{\cos x}}[/tex]1 over a fraction is equivalent to the reciprocal of the fraction,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{\cos x}{1+\cos x}-\frac{\cos x}{1-\cos x}[/tex]Now do the subtraction on the right side,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{\cos x(1-\cos x)-\cos x(1+\cos x)}{(1+\cos x)(1-\cos x)}[/tex]Note that the denominator is a difference of two squares,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{\cos x(1-\cos x)-\cos x(1+\cos x)}{1-\cos ^2x}[/tex]Apply the distributive property on the two terms of the numerator,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{\cos x-\cos ^2x-\cos x-\cos ^2x}{1-\cos ^2x}[/tex][tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{-\cos ^2x-\cos ^2x}{1-\cos ^2x}[/tex][tex]-2\frac{\cos^2x}{\sin^2x}^{}=\frac{-2\cos ^2x}{1-\cos ^2x}[/tex]Now, for the denominator remember the trigonometric identity
[tex]\sin ^2\alpha+\cos ^2\alpha=1[/tex]If we solve it for sin²α
[tex]\sin ^2\alpha=1-\cos ^2\alpha[/tex]Therefore, the expression we have in the denominator of the right side of the equation is equivalent to sin²x,
[tex]-2\frac{\cos^2x}{\sin^2x}^{}=-2\frac{\cos ^2x}{\sin ^2x}[/tex]Now we have on both sides,
[tex]-2\cot ^2x=-2\cot ^2x[/tex]Hence, we have proven that the two expressions are equivalent.