Respuesta :

Given the geometric sequence:

[tex]\frac{512}{243},-\frac{128}{81},\frac{32}{27}[/tex]

Let's find the 6th term of the sequence a6.

Apply the geometric sequence formula:

[tex]a_n=a_1(r)^{n-1}[/tex]

Where:

a1 is the first term = 512/243

n is the number of terms = 6

r is the common ratio.

To find the common ratio, the a term by the term preceding it.

Thus, we have:

[tex]r=-\frac{128}{81}\div\frac{512}{243}[/tex]

To divide flip the fraction on the right and change the division symbol to multiplication:

[tex]\begin{gathered} r=-\frac{128}{81}\ast\frac{243}{512} \\ \\ r=-\frac{3}{4} \end{gathered}[/tex]

The common ratio is -3/4

Thus, to find the 6th term, a6, we have:

[tex]\begin{gathered} a_6=\frac{512}{243}(-\frac{3}{4})^{6-1} \\ \\ a_6=\frac{512}{243}(-\frac{3}{4})^5 \\ \\ a_6=\frac{512}{243}(-\frac{3^5}{4^5}) \\ \\ a_6=\frac{512}{243}\ast(-\frac{243}{1024}) \end{gathered}[/tex]

Solving further:

[tex]\begin{gathered} a_6=-\frac{512}{1024} \\ \\ a_6=-\frac{1}{2} \end{gathered}[/tex]

Therefore, the sixth term, a6 is

[tex]-\frac{1}{2}[/tex]

ANSWER:

[tex]-\frac{1}{2}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico