Step 1: Write the formulae
[tex](x-a)^2+(y-b)^2=r^2[/tex][tex]\begin{gathered} \text{where} \\ (a,b)\text{ is the center of the circle} \\ r=\text{ the radius of the circle} \end{gathered}[/tex][tex]\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{where} \\ (x_1,y_1)\text{ and }(x_2,y_2)\text{ are two points on the Cartesian plane} \end{gathered}[/tex]Step 2: Find the radius of the first circle
In this case,
[tex](a,b)=(0,0)[/tex]Since the circle passes through (-30,-16), then the distance between the center and (-30,-16) is the radius.
Let the radius be r. Then,
d=r, (x1,y1) = (0,0), and (x2,y2) = (-30,-16)
Therefore,
[tex]r=\sqrt[]{(0-(-30))^2+(0-(-16))^2}=\sqrt[]{30^2+16^2}=\sqrt[]{900+256}=\sqrt[]{1156}[/tex]Thus
[tex]r=34[/tex]Therefore the radius of the new circle is 34 / 2 = 17
Step 3:
The new circle has radius 17 and center (0,0).
In this case,
r = 17
a = 0
b = 0
Therefore, the equation of the new circle is given by
[tex]\begin{gathered} (x-0)^2+(y-0)^2=17^2 \\ x^2+y^2=289 \end{gathered}[/tex]