Respuesta :

Equation of the heihgt of the object h(t):

[tex]h(t)=-16t^2+154t+83[/tex]

To find the instantaneous velocity find the derivate of the function h(t):

[tex]\begin{gathered} \frac{d}{dt}h(t)=\frac{d}{dt}-16t^2+\frac{d}{dt}154t+\frac{d}{dt}83 \\ \\ \frac{d}{dt}h(t)=-16\frac{d}{dt}t^2+154\frac{d}{dt}t+0 \\ \\ \frac{d}{dt}h(t)=-16(2)(t)+154 \\ \\ \frac{d}{dt}h(t)=-32t+154 \end{gathered}[/tex]

The instantaneous velocity is:

[tex]\bar{v}(t)=-32t+154[/tex]

Find the instantaneous velocity at t=9:

[tex]undefined[/tex]

RELAXING NOICE
Relax