Evaluate 3^x for x = −2, x = 1, and x = 3.

We need to evaluate the exponential function for some values of x.
First, remember that:
[tex]3^x=3\cdot3\cdot3\cdot3\ldots\cdot3\text{ (x factors)}[/tex]For example:
[tex]3^2=3\cdot3\text{ (two factors)}[/tex]Also, the negative exponent inverts the base:
[tex]3^{-a}=(\frac{1}{3})^a[/tex]So, for x = -2, we have:
[tex]3^{-2}=(\frac{1}{3})^2=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}[/tex]For x = 1, we have:
[tex]3^1=3[/tex]For x = 3, we have:
[tex]3^3=3\cdot3\cdot3=27[/tex]Therefore, the answer is:
1/9, 3, 27