Let's call the longer leg "a", the shorter leg "b" and the hypotenuse "c".
So, if "a" is 10 cm shorter than twice the length of "b", we have:
[tex]\begin{gathered} a=2b-10 \\ 2b=a+10 \\ b=\frac{a}{2}+5 \end{gathered}[/tex]And if "c" is 20 cm longer than "a", than:
[tex]c=a+20[/tex]We also know the Pythagorean Theorem to be:
[tex]c^2=a^2+b^2[/tex]We can substitute "b" and "c" into it to find out "a":
[tex]\begin{gathered} (a+20)^2=a^2+(\frac{a}{2}+5)^2 \\ a^2+40a+400=a^2+\frac{a^2}{4}+5a+25 \\ a^2-a^2-\frac{a^2}{4}+40a-5a+400-25=0 \\ -\frac{a^2}{4}+35a+375=0 \end{gathered}[/tex]Now we have to use Bhaskara's Formula to find a, so:
[tex]\begin{gathered} a=\frac{-35\pm\sqrt[]{35^2-4\cdot(-\frac{1}{4})\cdot375}}{2\cdot(-\frac{1}{4})}=\frac{-35\pm\sqrt[]{1225+375}}{-\frac{1}{2}}=-2(-35\pm\sqrt[]{1600})=-2(-35\pm40) \\ a_1=-2(5)=-10 \\ a_2=-2(-75)=150 \end{gathered}[/tex]Since we can't have a negative lentgh, we have a = 150 cm.
Now we use the equations to find "b" and "c":
[tex]b=\frac{a}{2}+5=\frac{150}{2}+5=75+5=80[/tex][tex]c=a+20=150+20=170[/tex]Finally, we have a = 150 cm, b = 80 cm and c = 170 cm.