[tex]3sinx+4=5cosx[/tex]
Square bothsides
[tex]\begin{gathered} (3sinx+4)^2=(5cosx)^2 \\ 9\sin^2x+24sinx+16=25\cos^2x \\ 9\sin^2x+24sinx+16=25(1-\sin^2x) \\ 9\sin^2x+24sinx+16=25-25\sin^2x \\ 9\sin^2x+25\sin^2x+24sinx+16-25=0 \\ 34\sin^2x+24sinx-9=0 \end{gathered}[/tex]On solving the quadratic , we have
[tex]sinx=0.2710,\text{ }\sin x=-0.9769[/tex]From sinx = 0.3710 , we are able to obtain angle x in radian as ;
[tex]\begin{gathered} x=\sin^{-1}(0.2710) \\ x=0.2744rad \end{gathered}[/tex]Sine is also positive in the second quadrant , so we have ;
[tex]\begin{gathered} x=\pi-0.2744 \\ x=2.8672rad \end{gathered}[/tex]Also,
For n=1 ,
x = 4.93 rad
So we can conclude that the answers provided in the question are false .