Given:
The mass of the satellite is m = 100 kg
The radius of the lower orbit is
[tex]R_l=\text{ 7.5}\times10^6\text{ m}[/tex]The radius of the higher orbit is
[tex]R_h=7.7\times10^6\text{ m}[/tex]The mass of the earth is
[tex]M\text{ = 5.97}\times10^{24}\text{ kg}[/tex]The universal gravitational constant is
[tex]G\text{ = 6.67}\times10^{-11}\text{ Nm}^2\text{ /kg}^2[/tex]To find the approximate change in gravitational force.
Explanation:
The gravitational force due to the lower orbit is
[tex]\begin{gathered} F_l=\frac{GMm}{(R_l)^2} \\ =\frac{6.67\times10^{-11}\times5.97\times10^{24}\times100}{(7.5\times10^6)^2} \\ =\text{ 707.9 N} \end{gathered}[/tex][tex]\begin{gathered} F_l=\frac{GMm}{(R_l)^2} \\ =\frac{6.67\times10^{-11}\times5.97\times10^{24}\times100}{(7.5\times10^6)^2} \\ =\text{ 707.9 N} \end{gathered}[/tex][tex]\begin{gathered} F_l=\frac{GMm}{(R_l)^2} \\ =\frac{6.67\times10^{-11}\times5.97\times10^{24}\times100}{(7.5\times10^6)^2} \\ \approx\text{ 707.9 N} \end{gathered}[/tex]The gravitational force due to the higher orbit is
[tex]\begin{gathered} F_h=\frac{GMm}{(R_h)^2} \\ \approx671.61\text{ N} \end{gathered}[/tex]The approximate change in gravitational force is
[tex]\begin{gathered} \Delta F=F_h-F_l \\ =671.61-707.9 \\ =-36.29\text{ N} \end{gathered}[/tex]The approximate change in gravitational force is 36.29 N