We have to find n(A∩B), which is the number of elements that belong both to A and B.
We can use the following relation:
[tex]n(A\cup B)=n(A)+n(B)-n(A\cap B)[/tex]We can then calculate n(A∩B) as:
[tex]\begin{gathered} n(A\cup B)=n(A)+n(B)-n(A\cap B) \\ n(A\cap B)=n(A)+n(B)-n(A\cup B) \\ n(A\cap B)=288+183-434 \\ n(A\cap B)=37 \end{gathered}[/tex]Answer: 37 [Option a]