We are given that f(x)=x+1 and g(x)=1-x^2.
First, consider that
[tex]g(x)=(1\text{ -x)(x+1)}[/tex]so, we have that
[tex]\frac{f(x)}{g(x)}=\frac{x+1}{(1\text{ -x)(x+1)}}[/tex]so, whenever x is not -1, we get
[tex]\frac{f(x)}{g(x)}=\frac{1}{1\text{ -x}}=\text{ -}\frac{1}{x\text{ -1}}[/tex]whose graph is like this
however, note that
[tex]\frac{g(x)}{f(x)}=\frac{(1\text{ -x)(x+1)}}{(x+1)}[/tex]so, whenever x is not -1 we have
[tex]\frac{g(x)}{f(x)}=\text{ -(x -1)}[/tex]whose graph looks like this