The vertex of the quadratic is (-3,-5) and the y intercept is (0,13).
The general form of the quadratic is,
[tex]y=ax^2+bx+c[/tex]Substituting the value of (0,13),
[tex]\begin{gathered} 13=a(0^2)+b(0)+c \\ c=13 \end{gathered}[/tex]The vertex is at point (-3,-5),
[tex]\begin{gathered} \frac{-b}{2a}=-3 \\ b=6a\ldots\ldots\text{.}(2) \end{gathered}[/tex]Also (-3,-5) satisfies the equation,
[tex]\begin{gathered} -5=a(-3)^2+b(-3)+c \\ -5=9a-3b+13 \\ 9a-3b=-18 \\ 3a-b=-6 \\ 3a-6a=-6\text{ (from equation (2))} \\ -3a=-6 \\ a=2 \end{gathered}[/tex]from equation (2),
[tex]\begin{gathered} b=6a \\ b=6(2) \\ b=12 \end{gathered}[/tex]Thus, the quadratic can be formed by substituting the values of a, b and c,
[tex]y=2x^2+12x+13[/tex]Thus, option (A) is correct.