The rule for translating a point 7 units to the right is given by
[tex](x,y)\to(x+7,y)[/tex][tex]\begin{gathered} Q^{^{\prime}}=(-6+7,6) \\ Q^{^{\prime}}=(1,6) \\ R^{^{\prime}}=(-6+7,0) \\ R^{^{\prime}}=(1,0) \\ S^{^{\prime}}=(0+7,0) \\ S^{^{\prime}}=(7,0) \end{gathered}[/tex][tex]\begin{gathered} \text{For 90}^0\text{ clockwise about the origin, the translation becomes:} \\ (x,y)\rightarrow(y,-x) \end{gathered}[/tex]Hence, the coordinates of the final image are:
[tex]\begin{gathered} Q^{^{\doubleprime}}=(6,-1) \\ R^{^{\doubleprime}}=(0,-1) \\ S^{^{\doubleprime}}=(0,-7) \end{gathered}[/tex]