9Let O be an angle in quadrant II such that csc =4"Find the exact values of tan 0 and cos 0.

Answer: cscθ = 4/√15, cot=-1/√15.
Explanation:
For this question we will use the following diagram:
Using the Pythagorean theorem we know that:
[tex]l^2+(-\frac{1}{4})^2=1^2.[/tex]Solving for l we get:
[tex]\begin{gathered} l^2=1-\frac{1}{16}=\frac{15}{16}, \\ l=\frac{\sqrt[]{15}}{4}. \end{gathered}[/tex]Therefore:
[tex]\csc \theta=\frac{1}{l}=\frac{1}{\frac{\sqrt[]{15}}{4}}=\frac{4}{\sqrt[]{15}}.[/tex][tex]\cot \theta=-\frac{\frac{1}{4}}{l}=-\frac{4}{4\sqrt[]{15}}=-\frac{1}{\sqrt[]{15}}.[/tex]