To find the legs of a right triangle, you can use the following relations:
[tex]\begin{gathered} \sin (\alpha)=\frac{opposite}{hypotenuse}_{} \\ \cos (\alpha)\frac{\text{adjacent}}{hypotenuse} \\ \tan (\alpha)=\frac{opposite}{\text{adjacent}} \end{gathered}[/tex]In this question, the hypotenuse and a angle of 41° is given.
You need to find x, that is, the adjacent side to 41°.
So, let's use an equation that uses information of the adjacent side and hypotenuse. This equation is:
[tex]\cos (\alpha)=\frac{adjacent}{hypotenuse}[/tex]Knowing that:
α = 41°
hypotenuse = 9
Then,
[tex]\begin{gathered} \cos (41)=\frac{x}{9} \\ \end{gathered}[/tex]Now, solve the equation.
[tex]0.7547=\frac{x}{9}[/tex]Multiplying both sides by 9:
[tex]\begin{gathered} 0.7547\cdot9=\frac{x}{9}\cdot9 \\ 6.79=x \end{gathered}[/tex]