Solve the following non-right triangles. a. A= 37°, C= 75° , a= 11

To solve the given triangle:
1. Find the missing angle (angle B)
The sum of internal angles of a triangle is always 180°:
[tex]\begin{gathered} A+B+C=180 \\ B=180-A-C \\ \\ B=180-37-75 \\ B=68 \end{gathered}[/tex]2. Use sine law to find the b and c:
[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]Find b:
[tex]\begin{gathered} \frac{b}{\sin B}=\frac{a}{\sin A} \\ \\ b=\frac{a\cdot\sin B}{\sin A} \\ \\ b=\frac{11\cdot\sin68}{\sin37}=16.94 \end{gathered}[/tex]Find c:
[tex]\begin{gathered} \frac{c}{\sin C}=\frac{a}{\sin A} \\ \\ c=\frac{a\cdot\sin C}{\sin A} \\ \\ c=\frac{11\sin 75}{\sin 37}=17.65 \end{gathered}[/tex]