Answer:
$65,419
Explanation:
We use the compound interest formula.
[tex]\begin{gathered} \text{Amount, A(t)}=A_o(1+r)^t \\ \text{Initial Amount, }A_o=\$48,000 \\ \text{Rate, r}=3.5\%=0.035 \\ \text{Time, t}=9\text{ years.} \end{gathered}[/tex]Therefore, the amount to be paid back will be:
[tex]\begin{gathered} A(t)=48000(1+0.035)^9 \\ =48000(1.035)^9 \\ =\$65419.07 \end{gathered}[/tex]The amount to be paid back will be $65,419 to the nearest dollar.