Respuesta :

Answer: x = 3, and y = 0..... (3, 0)

Given that;

y = -1/4x + 3/4

y = 1/4x - 3/4

This can be solve by equating the both equation

[tex]\begin{gathered} y\text{ = -}\frac{1}{4}x\text{ + }\frac{3}{4} \\ y\text{ = }\frac{1}{4}x\text{ - }\frac{3}{4} \\ \text{Equating both equation} \\ -\frac{1}{4}x\text{ + }\frac{3}{4}\text{ = }\frac{1}{4}x\text{ - }\frac{3}{4} \\ \text{The common denominator = 4} \\ \frac{-x\text{ + 3}}{4}\text{ = }\frac{x\text{ - 3}}{4} \\ \text{Cross multiply} \\ 4(-x\text{ + 3) = 4(x - 3)} \\ -4x\text{ + 12 = 4x - 12} \\ \text{Collect the like terms} \\ -4x\text{ - 4x = -12 }-\text{ 12} \\ -8x\text{ = -24} \\ \text{Divide both sides by -8} \\ \frac{-8x}{-8}\text{ = }\frac{-24}{-8} \\ x\text{ = 3} \\ To\text{ find y, substitute the value of x into any of the equation} \\ \text{ Using equation 1} \\ y\text{ = -}\frac{1}{4}x\text{ + }\frac{3}{4} \\ \text{where x = 3} \\ y\text{ =-}\frac{1}{4}\cdot\text{ 3 + }\frac{3}{4} \\ y\text{ = }\frac{-3}{4}\text{ + }\frac{3}{4} \\ \text{common denominator = 4} \\ y\text{ = }\frac{-3\text{ + 3}}{4} \\ y\text{ = }\frac{0}{4} \\ y\text{ = 0} \end{gathered}[/tex]

Therefore, x = 3 and y = 0---- (3, 0)

RELAXING NOICE
Relax