Given:
Discount 1, d1=35%
Discount 2, d2=20%.
Discount 3, d3=15%.
Discount 4, d4=10%.
The net decimal equaivalent can be calculated as,
[tex]\text{NDE}=(1-\frac{d_1}{100})\times(1-\frac{d_2}{100})\times(1-\frac{d_3}{100})\times(1-\frac{d_4}{100})[/tex][tex]\begin{gathered} \text{NDE}=(1-\frac{35_{}}{100})\times(1-\frac{20_{}}{100})\times(1-\frac{15_{}}{100})\times(1-\frac{10_{}}{100}) \\ =(1-0.35)\times(1-0.2)\times(1-0.15)\times(1-.1) \\ =0.65\times0.8\times0.85\times0.9 \\ =0.3978 \end{gathered}[/tex]
Therefore, the net decimal equaivalent of discount is 0.3978.