Can somebody help me with 10-13 ? I don’t know how to do the inverse of the functions

Problem N 10
we have the function
[tex]f(x)=9+\sqrt{4x-4}[/tex]Find out the inverse
Let
y=f(x)
[tex]y=9+4x-4[/tex]step 1
Exchange the variables (x for y and y for x)
[tex]x=9+\sqrt{4y-4}[/tex]step 2
Isolate the variable y
[tex]\begin{gathered} x=9+\sqrt{4y-4} \\ x-9=\sqrt{4y-4} \\ squared\text{ both sides} \\ (x-9)^2=4y-4 \\ 4y=(x-9)^2+4 \\ y=\frac{(x-9)^2}{4}+\frac{4}{4} \\ \\ y=\frac{(x-9)^{2}}{4}+1 \end{gathered}[/tex]therefore
The inverse function is
[tex]f^{-1}(x)=\frac{(x-9)^{2}}{4}+1[/tex]Problem N 11
we have the function
[tex]f(x)=\sqrt{6x-8}+5[/tex]Find out the inverse
Let
y=f(x)
[tex]y=\sqrt{6x-8}+5[/tex]Exchange the variables
[tex]\begin{gathered} x=\sqrt{6y-8}+5 \\ isolate\text{ the variable y} \\ x-5=\sqrt{6y-8} \\ squared\text{ on both sides} \\ (x-5)^2=6y-8 \end{gathered}[/tex]isolate the variable y
[tex]\begin{gathered} 6y=(x-5)^2+8 \\ y=\frac{(x-5)^2}{6}+\frac{8}{6} \\ \\ y=\frac{(x-5)^{2}}{6}+\frac{4}{3} \end{gathered}[/tex]therefore
The inverse function is equal to
[tex]f^{-1}(x)=\frac{(x-5)^{2}}{6}+\frac{4}{3}[/tex]