Recall the following formula for motion at constant acceleration:
[tex]2ad=v^2_f-v^2_i[/tex]Where a represents the acceleration, and d represents the distance traveled while accelerating from the initial velocity v_i to the final velocity v_f.
First, solve for the distance d:
[tex]d=\frac{v^2_f-v^2_i_{}}{2a}[/tex]The values of v_f and v_i are known, and the value of a can be calculated using the definition of acceleration:
[tex]a=\frac{v_f-v_i_{}}{t}[/tex]Substitute v_f=4.4 m/s, v_i=1.9 m/s and t=9.6s to find the acceleration:
[tex]\begin{gathered} a=\frac{4.4\frac{m}{s}-1.9\frac{m}{s}}{9.6s} \\ =\frac{2.5\frac{m}{s}}{9.6s} \\ =0.2604\frac{m}{s^2} \end{gathered}[/tex]Next, substitute a=0.2604 m/s^2 as well as v_f=4.4 m/s and v_i=1.9 m/s into the formula for d to find the traveled distance:
[tex]\begin{gathered} d=\frac{(4.4\frac{m}{s})^2-(1.9\frac{m}{s})^2}{2(0.2604)\frac{m}{s^2}} \\ =\frac{19.36\frac{m^2}{s^2}-3.61\frac{m^2}{s^2}}{0.52\frac{m}{s^2}} \\ =\frac{15.75\frac{m^2}{s^2}}{0.5208\frac{m}{s^2}} \\ =30.2m \end{gathered}[/tex]Therefore, the traveled distance in meters is equal to:
[tex]30.2[/tex]