Respuesta :

ANSWER

[tex]\begin{gathered} P(Orange)=\frac{1}{10} \\ P(Green)=\frac{1}{5} \\ P(Blue)=\frac{1}{6} \end{gathered}[/tex]

EXPLANATION

Given:

A table of experimental data

Desired Outcome:

Experimental probability of spinning orange, green and blue.

Probability of an Event A:

[tex]P(A)=\frac{number\text{ of outcomes in A}}{Total\text{ number of outcomes in Sample Space}}[/tex]

Experimental probability of spinning orange:

[tex]\begin{gathered} P(orange)=\frac{3}{7+3+1+6+5+8} \\ P(orange)=\frac{3}{30} \\ P(orange)=\frac{1}{10} \end{gathered}[/tex]

Experimental probability of spinning green:

[tex]\begin{gathered} P(green)=\frac{6}{30} \\ P(green)=\frac{1}{5} \end{gathered}[/tex]

Experimental probability of spinning blue:

[tex]\begin{gathered} P(blue)=\frac{5}{30} \\ P(blue)=\frac{1}{6} \end{gathered}[/tex]

Hence, the experimental probability of spinning orange, green and blue are 1/10, 1/5 and 1/6 respectively.

RELAXING NOICE
Relax