Given:
The quadratic equation is:
[tex]\begin{gathered} (1)x^2-49=0 \\ \\ (2)3x^3-12x=0 \\ \\ (3)12x^2+14x+12=18 \\ \\ (4)-x^3+22x^2-121x=0 \\ \\ (5)x^2-4x=5 \\ \end{gathered}[/tex]Find-:
Solve the quadratic equation is:
Explanation-:
The factoring of the equation is:
(1)
[tex]\begin{gathered} x^2-49=0 \\ \\ (x+7)(x-7)=0 \\ \\ x+7=0\text{ and }x-7=0 \\ \\ x=-7\text{ and }x=7 \end{gathered}[/tex](2)
The equation is:
[tex]\begin{gathered} 3x^3-12x=0 \\ \\ 3x(x^2-4)=0 \\ \\ 3x=0\text{ and }x^2-4=0 \\ \\ x=0\text{ and }(x+2)(x-2)=0 \\ \\ x=-2\text{ and }x=2\text{ and }x=0 \end{gathered}[/tex](3)
The equation is:
[tex]\begin{gathered} 12x^2+14x+12=18 \\ \\ 12x^2+14x+12-18=0 \\ \\ 12x^2+14x-6=0 \\ \\ 6x^2+7x-3=0 \\ \\ 6x^2+9x-2x-3=0 \\ \\ 3x(2x+3)-1(2x+3)=0 \\ \\ (2x+3)(3x-1)=0 \end{gathered}[/tex]So the value of "x" is:
[tex]\begin{gathered} 2x+3=0\text{ and }3x-1=0 \\ \\ x=-\frac{3}{2}\text{ and }x=\frac{1}{3} \end{gathered}[/tex](4)
[tex]\begin{gathered} -x^3+22x^2-121x=0 \\ \\ x(-x^2+22x-121)=0 \\ \\ x=0\text{ and }-x^2+22x-121=0 \\ \\ -x^2+22x-121=0 \\ \\ -x^2+11x+11x-121=0 \\ \\ -x(x-11)+11(x-11)=0 \\ \\ (x-11)(-x+11)=0 \\ \\ x=11\text{ and }x=11 \end{gathered}[/tex]So, the value of "x" is:
[tex]x=0\text{ and }x=11[/tex](5)
[tex]\begin{gathered} x^2-4x=5 \\ \\ x^2-4x-5=0 \\ \\ x^2-5x+x-5=0 \\ \\ x(x-5)+1(x-5)=0 \\ \\ (x-5)(x+1)=0 \\ \\ x=5\text{ and }x=-1 \end{gathered}[/tex]The value of x is:
[tex]x=5\text{ and }x=-1[/tex]