Given data:
* The uncertainty in the measure of the location is given as,
[tex]\Delta x=10^{-10}\text{ m}[/tex]Solution:
According to the uncertainty principle, the theoretical limit to measure the momentum is,
[tex]\Delta p\approx\frac{h}{4\pi\Delta x}[/tex]where h is the Planck's constant,
Substituting the known values,
[tex]\begin{gathered} \Delta p\approx\frac{6.626\times10^{-34}}{4\pi\times10^{-10}} \\ \Delta p\approx0.527\times10^{-24}\text{ kg m }s^{-1} \end{gathered}[/tex]Thus, in advanced mathematics, the value of the momentum in kilogram meter per second is,
[tex]\text{0}.527\times10^{-24}\operatorname{kg}ms^{-1}[/tex](B). The mass of the electron is,
[tex]m=9.1\times10^{-31}\text{ kg}[/tex]Thus, the uncertainty in the electron speed is,
[tex]\Delta v=\frac{\Delta p}{m}[/tex]Substituting the known values,
[tex]\begin{gathered} \Delta v=\frac{0.527\times10^{-24}^{}}{9.1\times10^{-31}} \\ \Delta v=0.058\times10^7\text{ m/s} \\ \Delta v=0.58\times10^6\text{ m/s} \end{gathered}[/tex]Thus, the uncertainty in the electron speed is,
[tex]\Delta v=0.58\times10^6\text{ m/s}[/tex]