Solve the triangles with the given parts. 25) d = 5.60, € = 9.96, F = 109.1° Round to 4 decimal places as you work, then round your final answer to 1 decimal place.

We are given the following triangle:
We will determine the sides and angles of the triangle.
To determine the value o side f we will use the cosine law, which is the following:
[tex]f^2=e^2+d^2-2(e)(d)cosF[/tex]Now, we plug in the values:
[tex]f^2=(9.96)^2+(5.6)^2-2(9.96)(5.6)cos(109.1)[/tex]Solving the operations:
[tex]f^2=203.7[/tex]Now, we take the square root to both sides:
[tex]\begin{gathered} f=\sqrt{203.7} \\ f=14.3 \end{gathered}[/tex]Therefore, side "f" is 14.3.
Now, we will determine angle D using the sine law:
[tex]\frac{sinD}{d}=\frac{sinF}{f}[/tex]Now, we multiply both sides by "d":
[tex]sinD=\frac{sinF}{f}d[/tex]Now, we substitute the values:
[tex]sinD=\frac{sin(109.1)}{14.3}(5.6)[/tex]Solving the operation:
[tex]sinD=0.3[/tex]Now, w take the inverse function of the sine:
[tex]D=sin^{-1}(0.3)[/tex]Solving the operations:
[tex]D=17.2[/tex]Therefore, angle D is 17.2°.
To determine angle E we will us the fact that the sum of the interiosr angles of a triangle adds p to 180:
[tex]F+D+E=180[/tex]Substitting the values:
[tex]109.1+17.2+E=180[/tex]Adding the values:
[tex]126.3+E=180[/tex]Now, we subtract 126.3 from both sides:
[tex]\begin{gathered} E=180-126.3 \\ E=53.7 \end{gathered}[/tex]Therefre, angle E is 53.7°