In this problem, we have an exponential growth function of the form
[tex]y=a(1+r)^x[/tex]where
a=$1,100
r=5%=0.05
substitute
[tex]\begin{gathered} y=1,100(1+0.05)^x \\ y=1,100(1.05)^x \end{gathered}[/tex]For 13 months
x=13/12 years
substitute
[tex]\begin{gathered} y=1,100(1.05)^{(\frac{13}{12})} \\ y=1,159.71 \end{gathered}[/tex]so
The interest is equal to
1,159.71-1,100=$59.71