we can match 0 and find the roots
[tex]C^2-9C-18=0[/tex]ussing...
[tex]C=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where a=1, b=-9 and c=-18
so replacing
[tex]\begin{gathered} C=\frac{-(-9)\pm\sqrt[]{(-9)^2-4(1)(-18)}}{2(1)} \\ \\ C=\frac{9\pm\sqrt[]{81+72}}{2} \\ \\ C=\frac{9\pm3\sqrt[]{17}}{2} \end{gathered}[/tex]we have 2 roots
[tex]\begin{gathered} C_1=\frac{9+3\sqrt[]{17}}{2} \\ \\ C_2=\frac{9-3\sqrt[]{17}}{2} \end{gathered}[/tex]now the factoring is
[tex](C-\frac{9-3\sqrt[]{17}}{2})(C-\frac{9+3\sqrt[]{17}}{2})=0[/tex]