To find the answer, let's calculate the functions and then compare the results.
1) x = 100
[tex]\begin{gathered} f(x)=4x-5 \\ f(100)=4\cdot100-5=400-5 \\ f(100)=395 \\ \\ g(x)=4\cdot(x-5) \\ g(100)=4\cdot(100-5)=4\cdot95 \\ g(100)=380 \\ \\ h(x)=\frac{x}{4}-5 \\ h(100)=\frac{100}{4}-5=25-5 \\ h(100)=20 \end{gathered}[/tex]Since 395 > 380 > 20, f(100) has the largest value.
2) x = -100
[tex]\begin{gathered} f(-100)=4\cdot(-100)-5=-400-5 \\ f(-100)=-405 \\ \\ g(-100)=4\cdot(-100-5)=4\cdot(-105) \\ g(-100)=-420 \\ _{} \\ h(-100)=-\frac{100}{4}-5=-25-5 \\ h(-100)=-30 \end{gathered}[/tex]Since - Are you30 > - 405 > - 420, h(-100) has the largest value.
3) x = 1/100
[tex]\begin{gathered} f(\frac{1}{100})=4\cdot\frac{1}{100}-5=\frac{4}{100}-5 \\ f(\frac{1}{100})=0.04-5=-4.96 \\ \\ g(\frac{1}{100})=4\cdot(\frac{1}{100}-5)=4\cdot(-4.99) \\ g(\frac{1}{100})=-19.96 \\ \\ h(\frac{1}{100})=\frac{\frac{1}{100}}{4}-5=\frac{1}{100}\cdot\frac{1}{4}-5=\frac{1}{400}-5 \\ h(\frac{1}{100})=-4.99 \end{gathered}[/tex]
Since - 4.96 > - 4.99 > - 19.96, h(1/100) has the largest value.