Answer:
sin(795°) = (√6+√2)/4
Step-by-step explanation:
The angle 795° is 2×360° +75°, so is coterminal with the angle 75°. This means we can compute the sine of the angle using the angle sum formula (see below).
When we rationalize the denominator of the result, we get ...
[tex]\sin{(795^{\circ})}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}\cdot\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{4}[/tex]