Find the domain and range, the x-intercepts (if any), y-intercepts (if any), intervals on which the function is increasing, decreasing or constant; and the missing function values, indicated by question marks, below each graph

Find the domain and range the xintercepts if any yintercepts if any intervals on which the function is increasing decreasing or constant and the missing functio class=

Respuesta :

[tex]Domain:(-\infty,\infty)[/tex]

[tex]Range:\lbrack-2,2\rbrack[/tex]

[tex]\begin{gathered} y-intercept:(0,0) \\ x-\imaginaryI ntercept:(0,0) \end{gathered}[/tex][tex]\begin{gathered} increasing\text{ .\lparen-2,2\rparen} \\ constan\text{ :\lparen-}\infty,-2\rbrack\cup\lbrack2,\infty) \end{gathered}[/tex][tex]\begin{gathered} f(-9)=-2 \\ f(14)=2 \end{gathered}[/tex]Explanation

Step 1

a)Domain:The domain of a function is the set of all possible inputs for the function, it means all the x-values the function takes

we can see the x values go fromnegative infinite to positive infinite, hence

[tex]Domain:(-\infty,\infty)[/tex]

b)Range:The range of a function is the complete set of all possible resulting values of the dependent variable(y), so again, let's check the graph

therefore,

[tex]Range:\lbrack-2,2\rbrack[/tex]

Step 2

intercepts:

a) x-intercept is he x-intercept is where a line crosses the x-axis

and

b) y-intercept is the point where the graph intersects the y-axis

so, let's check those points in the graph

therefore,

[tex]\begin{gathered} y-intercept:(0,0) \\ x-\imaginaryI ntercept:(0,0) \end{gathered}[/tex]

Step 3

Increasing, decreasing or constant

a)increasing.A function is increasing if the y y values continuously increase as the x x values increase,

and

b) if the function is constant the graph will look like a horizontal line, so

therefore,

[tex]\begin{gathered} increasing\text{ .\lparen-2,2\rparen} \\ constan\text{ :\lparen-}\infty,-2\rbrack\cup\lbrack2,\infty) \end{gathered}[/tex]

Step 4

finally, evaluate the funcion at the indicated poitns:

to do, that check the y coordinate of the indicated x values:

as the function is constant, we have

[tex]\begin{gathered} f(-9)=-2 \\ f(14)=2 \end{gathered}[/tex]

I hope this helps you

Ver imagen KendalynnJ104969
Ver imagen KendalynnJ104969
Ver imagen KendalynnJ104969
Ver imagen KendalynnJ104969
RELAXING NOICE
Relax